ru en
About us

About us

More
QPM Lab in Instagram

QPM Lab in Instagram

More
Scientific Areas

Scientific Areas

More

    Research Areas Areas

    Quantum imaging

    Quantum imaging - a relatively new section of quantum optics, which uses the unique properties of quantum correlations, such as quantum entanglement, in order to obtain images of objects with a resolution or any other image criterion superior to any analogs in classical optics. The experimental quantum imaging schemes developed in the laboratory laboratory of the QPM can serve as the basis for devices: 'ghost' (also two-photon or correlation) imaging quantum lithography imaging with low noise (shot) quantum sensors and other devices. Potentially quantum imaging can be used to store, transfer and process data in quantum computers, as well as to transmit encrypted information.  

    Quantum information theory

    Quantum information theory is one of the most developing sections of modern science. It is at the junction of areas such as quantum physics, information theory and mathematics.   The basic concern in quantum information theory is to estimate the capacity of quantum channels. One of the main areas of research in the laboratory is the analysis of the information properties of various non-classical states of light. For this purporses dissipative dynamics of multimode states models will be constructed, that describe their propagation in various media. Based on such physical models, it will be possible to conduct an information analysis of real quantum channels, which will more accurately describe the operation of various protocols of quantum informatics and evaluate the throughputs of physical quantum channels.

    Quantum optics

    The methods of quantum optics are extremely extensive; they open the way to unique theoretical and experimental research, both fundamental and applied.   Of particular interest are two main areas of research in this area: Firstly, it is a search and description of fundamentally new quantum optical effects, methods for applying useful effects and methods for compensating negative ones. Secondly, it is the development of new mathematical models that describe optical elements that are sometimes well known from the point of view of classical theory in terms of quantum theory in a more accurate way, which allows them to find new, sometimes unexpected, applications, adapt their use to non-classical light.

    Last publications Publications

    2021 year
    • Исмагилов А.О., Наседкин Б.А., Яшин Д.А., Путилин С.Э., Цыпкин А.Н.

      Research of spontaneous parametric down conversion generation conditions of terahertz radiation by crystals Mg:LiNbO3, ZnTe, ZnSe - 2021

    • Гончаров Р.К., Киселев Ф.Д., Самсонов Э.О.

      Квантовая коммуникация на непрерывных переменных в системе на боковых частотах с гауссовской модуляцией//X Конгресс молодых ученых: Сборник тезисов - 2021

    • Лейбов Л.С.

      , Цыпкин А.Н., Залипаев В.В. Построение фантомных изображений в частотной и временной областях на основе гауссовых пучков ТГц диапазона спектра, модулированных случайным фазовым экраном //Сборник трудов IX конгресса молодых ученых - 2021

    • Исмагилов А.О.

      Исследование спекл-структур, получаемых при работе с ТГц фантомной визуализацией//Сборник тезисов докладов конгресса молодых ученых. Электронное издание. - 2021

    • Samsonov E., Goncharov R., Fadeev M., Zinoviev A., Kirichenko D., Nasedkin B., Kiselev A., Egorov V.

      Coherent detection schemes for subcarrier wave continuous variable quantum key distribution // Journal of the Optical Society of America B: Optical Physics - 2021, Vol. 38, No. 7, pp. 2215-2222

    • Kozubov A.V., Gaidash A.A., Kiselev A., Miroshnichenko G.P.

      Filtration mapping as complete Bell state analyzer for bosonic particles // Scientific Reports - 2021, Vol. 11, No. 1, pp. 14326

    Information © 2015-2021 ITMO University
    2015 Department of Information Technology